
Implicit Unstructured Grid Solvers on the iPSC/860

V. Venkatakrishnan 1,

Report RNR-93-010, June 1993

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1

Moffett Field, CA 94035

June 8, 1993

Abstract

A mesh-vertex finite volume scheme for solving the Euler equations

on triangular unstructured meshes is implemented on an MIMD (mul-

tiple instruction/multiple data stream) parallel computer. An explicit

four-stage Runge-Kutta scheme is used to solve two-dimensional flow

problems. A family of implicit schemes is also developed to solve these

problems, where the linear systems that arise at each time step are

solved by the preconditioned GMRES algorithm. The choice of precon-

ditioner in a distributed memory setting is discussed. The methods are

compared both in terms of elapsed times and convergence rates. It is

found that the implicit schemes outperform the explicit schemes on a

distributed memory parallel computer, the iPSC/860.

(submitted to The 3$nd Aerospace Sciences Conference, Reno, NV , January

 994.)

1Applied Research Branch, Mail Stop T045-1, Numerical Aerodynamic Simulation (NAS)
Systems Division, NASA Ames Research Center, Moffett Field, CA 94035. The author is
an employee of Computer Sciences Corporation. This work was funded under contract NAS
2-12961.

Implicit Unstructured Grid Solvers on the iPSC/860

V. Venkatakrishnan 1

M.S. T045-1, NAS Applied Research Branch

NASA Ames Research Center, Moffett Field, CA 94035

Abstract

A mesh-vertexfinitevolume scheme forsolvingthe Eulerequationson triangularunstructuredmeshes

isimplementedon an MIMD (multipleinstruction/multipledatastream)parallelcomputer. An explicit

four-stageRunge-Kutta scheme isused to solvetwo-dimensionalflow problems. A familyofimplicit

schemes isalsodevelopedto solvetheseproblems,where the linearsystemsthat ariseat each time

steparesolvedby the preconditionedGMRES algorithm.The choiceofpreconditionerina distributed
memory settingisdiscussed.The methods arecompared both interms ofelapsedtimesand convergence

rates.Itisfound that the implicitschemesoutperformthe explicitschemeson a distributedmemory

parallelcomputer,the iPSC/860.

1 Introduction

Triangular meshes have become quite popular in computational fluid dynamics. They are ideal for handling

complex geometries and for adapting to flow features, such as shocks and boundary layers. Considerable

attention has been focused on improving the spatial' operator, which has evolved to a very high degree of

sophistication for the Euler and Navier-Stokes equations [1, 2]. Distributed memory parallel computers seem

to offer an avenue for doing large problems very fast due to their scalability. However, these machines only
scale in hardware and not in software. For the goal of sustained high performance on these machines to be

realized, many fundamental issues need to be addressed. Among these are scalable algorithms and software.

Explicit schemes used in computational fluid dynamics are completely parallel. They only require a sim-

ple update procedure that involves local dependencies. On a parallel computer, such schemes typically only

require communication to nearest neighbors. Implicit schemes, on the other hand, require the solution of

coupled equations which involves global dependencies. However, there are some applications, such as certain
classes of unsteady flows, where explicit schemes are quite useful. When steady state solutions are sought,

explicit schemes typically require thousands of time steps to converge and exhibit very slow convergence

rates. Implicit schemes allow larger time steps to be taken and usually result in better convergence rates.

Implicit schemes have to be designed carefully since the work involved at each time step could be substantial.

Venkatakrishnan and Mavriplis [3] developed and tested a family of implicit schemes for solving unstructured
grid problems on the Cray Y-MP. Their conclusion was that the Generalized Minimum Residual technique

of Saad and Schultz [4] with incomplete LU preconditioning based on the original nonzero pattern (GM-

RES/ILU) was better than the other implicit methods and was competitive with the unstructured multigrid

strategy [2]. On distributed memory parallel computers, the design of implicit schemes is more difficult since

parallelism and load balance during the implicit phase are additional considerations.

Venkatakrishnan et al. [5] and Das et al. [6] have shown that it is possible to obtain supercomputer
performance when solving explicit unstructured grid problems on the iPSC/860. By paying careful attention

to the partitioning of the grid, communication schedule and data structures, they were able to show that 2-3

times the speed of a Cray Y-MP/1 could be obtained with 128 processors of the iPSC/860.

In this paper the work of [5] is briefly reviewed since it is identical to the computation of the right hand
side in the implicit scheme. The design of implicit schemes suitable for distributed memory parallel computers

is discussed next. The issues in implementing the GMRES algorithm and the preconditioners are addressed.

Finally, results for a typical flow around a multi-element airfoil are presented and the performances of the

explicit and implicit schemes on the iPSC/860 are characterized.

1The author is an employee of Computer Sciences Corporation. This work was funded under contract NAS 2-12961.

2 Governing Equations and Spatial Discretization

The Euler equations in integral form for a control volume f2 with boundary Oft read

-_ u dv + F(u,n) dS = 0. (1)

Here u is the solution vector comprised of the conservative variables density, the two components of momen-

tum and total energy. The vector F(u, n) represents the inviscid flux vector for a surface with normal vector
n. The net effiux through the control volume boundary is termed the residual. The variables u are stored

at the vertices of a triangular mesh. The control volumes are nonoverlapping polygons which surround the

vertices of the mesh. They form the dual of the mesh, which is composed of segments of medians. Associated

with each edge of the original mesh is a (segmented) dual edge. The contour integrals in Equation (1) are

replaced by discrete path integrals over these dual edges. The flux F(u, n) is replaced by a numerical flux

function. The construction of the numerical fluxes is done in two stages:

1. First, a piecewise linear reconstruction of the variables is performed. The variables are then interpolated

to the edges of the control volumes. The gradients at the vertices which are required for this step are

also computed as discrete path integrals over the edges of the control volmes.

2. The variables on either sides of the control volume edges are interpreted as initial data for Roe's

approximate Riemann solver [7].

A Riemann problem is defined by Equation (1) subject to two constant states as initial data in one dimension.

More details on the spatial discretization may be found in Barth and Jespersen [1]. A four-stage Runge-

Kutta scheme is used to advance the solution in time for the explicit scheme. The residuals are evaluated by

looping over the edges of the original mesh and vectorization is achieved by Barth and Jespersen by coloring
the edges. For the parallel implementation it is assumed that the triangulation of the computational domain

and the mesh connectivity information are provided.

Two slightly different schemes are derived based on whether the cells or the vertices of the mesh are

partitioned. For explicit schemes, identical solutions and convergence histories are obtained irrespective
of this choice. The only difference lies in the way the communication is performed which is discussed in

the following paragraph. With the implicit schemes considered in this paper, on the other hand, one will

in general obtain different convergence histories depending on this choice. The reason for this is that the

schemes considered in this paper are only implicit within each processor (in the preconditioning phase). Cell

partitioning leads to an overlap of vertices whereas vertex partitioning yields none and therefore, the two

techniques produce different results. The treatment of the interpartition boundary vertices in the implicit
scheme is a very important issue in the case of cell partitioning. The flexibility afforded in this regard by

cell partitioning makes cell partitioning less restrictive than vertex partitioning.

With cell partitioning, each triangle is assigned to a partition and the interpartition boundaries consist of

edges of the original mesh. The vertices and the edges on the interpartition boundaries are duplicated. Figure

1 shows a triangular mesh and a 2-way cell partitioning. Two communication phases are then required at

each stage of the four-stage Runge-Kutta time integration, one during the computation of the gradients and
the other, during the formation of the residuals. At an interpartition boundary vertex, which is shared by two

or more partitions, each processor only sees a fraction of the control volume and thus computes only partial

contributions to the integrals. The communication at the interpartition boundaries then consists of summing

these local contributions to the integrals such as volumes, fluxes, and gradients. The communication phase

is therefore termed the combine phase and involves floating point operations.

With vertex partitioning, each vertex is assigned uniquely to a partition and the interpartition boundaries
consist of the dual edges (the edges of the control volumes). Figure 2 shows a triangular mesh and 2-way

vertex partitioning. Again, two communication phases are required at each stage of the four-stage Runge-

Kutta time integration. The communication required is different, however. The processors exchange data

at two rows of vertices that are incident to the interpartition boundary edges. Now each processor can

compute the entire integrals for all the vertices it owns. There is duplication of the flux calculations at the

interpartition boundary edges, but it is not a crucial issue on medium-grained parallel computers. Thus the
communication phase with vertex partitioning also involves floating point operations.

3 5

4

Processor 0 Processor 1

Figure 1: 2-way cell partitioning for a simple triangulation.

6,2
3

7,3

2,4 i - 5,1 [
Pr6cessor 0 Processor I

Figure 2: 2-way vertex partitioning for a simple triangulation.

Simon [8] considered three different recursive partitioning strategies. In the context of two-dimensional

Euler equations, Venkatakrishnan et al. [5] showed that the spectral bisection strategy was superior to the
coordinate and graph bisection strategies. Therefore, in this work, the recursive spectral bisection is used

for partitioning.

After partitioning, global values of the data structures required to define the unstructured grid are given
local values within each partition. We thus dispense with any references to global indices. Das et al. [6] in

their work develop primitives which allow access to global data address space, so that the transformation

from global to local data structures is not necessary. Access to global data structures is highly desirable for

adaptive grid applications, but is not necessary when dealing with static grids. In the present implementation,

each local data set also contains the information a partition requires for communication at its interpartition

boundaries. The information required for communication at the interpartition boundaries is precomputed

using sparse matrix data structures. Slightly different data structures are used depending on whether cell
partitioning or vertex partitioning is employed. For details on these data structures, see [5]. Each subgrid is

assigned to one processor. It was shown in [5] that the mapping of the subgrids to processors is not a crucial

issue on the Intel iPSC/860. Therefore, a naive mapping that assigns subgrid 0 to processor 0, subgrid 1

to processor 1, and so on, is employed. The conversion from global to local addresses, partitioning, and the

generation of data structures required for communication at the interpartition boundaries are all done on a

workstation as a preprocessing step.

3 Implicit scheme

After discretizing Equation (1) in space, the following system of coupled ordinary differential equations is
obtained:

M dW
-_- + R(W) = O. (2)

Here W is the vector of unknowns over all the grid points. M is the mass matrix and represents the relation-

ship between the average value in a control volume and the values at the vertices (the vertex representing
the control volume and its nearest neighbors). It is only a function of the mesh and hence a constant matrix

for the static case. Since a steady state solution is sought, time accuracy is not an issue and M can be

replaced by the identity matrix yielding the following system of ordinary differential equations for the vector
of unknowns W :

dW + R(W) = 0 (3)
dt

If the time derivative is replaced by:
dW W n+l - W n

- (4)dt At

an explicit scheme is obtained by evaluating R(W) at time level n. An implicit scheme is obtained by
evaluating R(W) at level n + 1. In the latter case, linearizing R about time level n, we obtain

I OR)-_ + -6W _XW, = - P_ (5)

zxw = (w °+1 - w"), (6)

Equation (5) represents a large nonsymmetric linear system of equations for the updates of the vector of

unknowns and needs to be solved at each time step. As At tends to infinity, the method reduces to the

standard Newton's method. The term _r symb.olicalty represents the implicit side upon linearization and

involves the Jacobian matrices of the flux vectors with respect to the conservative variables. Due to storage
considerations only a lower order representation of the operator is employed on the implicit side. Thus the

graph of the sparse matrix oR is identical to the graph of the supporting unstructured mesh (i.e. each vertexb-W
is only connected to its nearest neighbors). The sparse matrix thus has a symmetric structure, even though
the matrix is itself unsymmetric in general. A complete linearization of R(W) will result in a much denser

matrix with a different graph, since each vertex will also be connected to its next-to-nearest neighbors. The

storage requirements for such a scheme become prohibitive even for two-dimensional grids. The penalty in

making this approximation in the linearization is that Equation (5) can never approach Newton's method
(with its associated quadratic convergence property) due to the mismatch of the right and left hand side

operators.

Since the linear system is itself approximate there is little to be gained by solving it to a great precision.

To obtain favorable overall (nonlinear) convergence, it has been found that it is better to solve the linear

problem to a moderate degree of precision and proceed to the next time step. However, for stiff problems
it may well be necessary to solve the linear problem to high precision and one has the control to do so in

the present framework. The time step in Equation (5) is allowed to vary inversely proportional to the L2

norm of the residual. Since there is a mismatch of operators in Equation (5), it is also necessary to limit the

maximum time step.

There is a host of methods in linear algebra literature for solving nonsymmetric systems of linear equa-

tions, but in this work only the GMRES technique developed by Saad and Schultz [4] is considered. The
GMRES technique is quite efficient for solving sparse nonsymmetric linear systems and is outlined below.

Let x0 be an approximate solution of the system

Ax + b = 0 (7)

where A is an invertible matrix. The solution is advanced from z0 to z_ as

xk = xo+ yk (8)

GMRES(k) finds the best possible solution for Yk over the Krylov subspace < vx, Avl, A2Vl,, Ak-lvl >

by solving the minimization problem

Ilrkll-- Minullvl + Ayll (9)

vl = Azo + b, rk = Azk + b (10)

GMRES procedure forms an orthogonal basis vl, v2,. vk (termed search directions) spanning the Krylov
subspace by a modified Gram-Schmidt method. These search directions need to be stored. As k increases,

the storage increases linearly and the number of operations, quadratically. To mitigate this, Saad and Schultz

also describe GMRES (k, m) which is a restarted GMRES (k), where the k search directions are discarded
and recomputed every rn cycles. GMRES can also be thought of as an optimal polynomial acceleration

scheme. Preconditioning greatly improves the performance of GMRES as well as the other related iterative

methods. It clusters the eigenvalues around unity so that the optimal polynomial generated by GMRES can

better annihilate the errors associated with each eigenvalue.

4 Preconditioning and parallelism issues

Instead of Eqn. (7) the preconditioned iterative methods solve the following system:

AQ(Q-lx) + b = 0 (11)

The system of linear equations in Eqn. (11) is referred to as the right preconditioned system and Q as the

right preconditioner. Right preconditioning is preferred over left preconditioning for reasons given in [3].
The role of the preconditioner is to cluster the eigenvalues around unity. The choice of preconditioners and

the issues in implementing the preconditioned GMRES on the parallel computer are addressed below.

On a distributed memory parallel computer the same least squares problem of Equation (9) is seen by
all the processors. While this results in some duplication of work, the main nonlocal kernels of the GMRES

are distributed across multiple processors. These kernels include sparse matrix - vector multiplication, dot

products and L2 norm evaluations. Whereas on a Cray Y-MP, vectorization for the sparse matrix-vector

product is achieved by using an edge-oriented data structure for the matrix and coloring the edges of the

graph, this is not the optimal way to compute the matrix vector product on a parallel computer where

locality is of utmost importance. This is true even when dealing with a single node of the parallel computer.

Therefore the usual row oriented sparse matrix data structure is used. We have found that even on a single
node this approach outperforms the one that uses the edge-based data structure by a factor of two. In the

case of cell partitioning, the rows corresponding to the interpartition boundary vertices are distributed across

the processors sharing them while the remaining rows are assigned uniquely to processors. In the case of

vertex partitioning the rows are uniquely assigned to processors. Akin to the explicit scheme, each processor

computes its share of the matrix vector multiplication. The communication step with cell partitioning

consists of summing the local contributions at the interpartition boundaries. The communication step with
vertex partitioning consists of exchange of the vector components at the two rows of vertices incident to

the interpartition boundary edges. This is followed by the matrix - vector multiplication at each processor.

More details on the implementations of the matrix - vector product may be found in [9].

In most practical problems of interest, the choice of the preconditioner is very important and the effort

involved in applying the preconditioner should not be prohibitive. The implicit scheme without precondition-

ing possesses complete parallelism, except for the duplication of some work when solving the least squares
problem in GMRES. On a parallel computer the parallelism in the preconditioning phase is an important

additional consideration. A simple choice is a block diagonal preconditioner which computes the inverse of
the 4x4 diagonal block associated with a grid point. The LU decomposition of the 4 x 4 blocks and the

forward and back solves are local and hence are inherently parallel. In [3] an ILU(0) preconditioner was
also considered. ILU(0) refers to an incomplete factorization with no fill-in beyond the original non-zero

pattern. By using a level scheduling [10] (also known as wavefront ordering) it is possible to obtain par-

allelism with this preconditioner. Under this permutation of the matrix, unknowns within a wavefront are

eliminated simultaneously. However, since the degree of parallelism varies with the wavefront, it cannot be

easily exploited on a distributed memory parallel computer. A fixed partitioning strategy for the grid incurs

substantial load imbalance, while a dynamic partitioning strategy entails substantial data movement and

hence,increasedcommunicationcosts.Barszczetal. [11]havefoundthatusingafixedpartitioningstrategy
whensolvingtriangularsystemsof equationsona regulargrid resultsin lowupperboundsonefficiency
evenin theabsenceof communication.Therefore,for generalsparsematrices,theILU(0)preconditioneris
ill-suitedfor implementationona distributedmemoryparallelcomputer.Therefore,wesettleonan ILU
preconditionerthatisprocessor-impliciti.e.,ILU(0)iscarriedoutforall theverticesinternalto aprocessor.
Thus,at amacro-level,theoverallpreconditionercanbeviewedasanapproximateblockJacobiiteration,
whereineachblockis assignedto aprocessorandanapproximateLU factorizationviz. ILU(0)is carried
out. A blockhererefersto amacro-blockconsistingof all theunknownsassignedto aprocessor.Whencell
partitioningisemployed,a blockdiagonalpreconditioneris usedforall theverticeson theinter-processor
boundaries,whereablockreferstothe4×4matrixassociatedwitheachvertex.Theoverallpreconditioner
isweakerthantheglobalILU(0),anddegeneratesto blockdiagonalpreconditioningin thelimit ofonegrid
pointperprocessor.Thus,asthenumberof processorsis increased,degradationin convergenceis to be
expected.Thisdegradationshouldbemoderate,sincetheiPSC/860iscoarse-grainedparallelcomputer.

In orderto improvethepreconditionerat theinterpartitionboundaryverticeswhenusingcellpartition-
ing,domaindecompositiontechniqueshavealsobeenexamined.Tothisend,themodifiedSchurcomplement
preconditioning(MSC)of KeyesandGropp[12]witha blockdiagonalapproximationfor theSchurcom-
plementis implemented.Theentriesof thisblockdiagonalapproximationaredeterminedby theprobing
techniqueofChanandResasco[13]andKeyesandGropp[12].Sincea4x4blockdiagonalapproximationis
sought,theprobevectorsusedareel, e2, e3 and e4, where ej is the jth unit column vector. The probing tech-
nique allows for a banded approximation to the Schur complement. However, banded approximations for the

Schur complement pose problems in a parallel setting. It is also not clear as to how do deal with cross points

(vertices that are shared by more than two processors). Therefore, only a block diagonal approximation is
investigated.

5 Performance on the Intel iPSC/860

Subcritical flow past a four-element airfoil in a landing configuration with a freestream Mach number M¢¢
= 0.2 and an angle of attack of 5 ° is considered as a test case. Supercritical flows are not considered here

because convergence is a problematic issue whenever limiters are employed and therefore, it is difficult to

study the effect on convergence as the number of processors is increased. However, if the fixes to limiters,

as proposed by Venkatakrishnan [14], are implemented, the trends are expected to be similar to those for
subcritical flows.

Performance results are presented for two problem sizes that are representative for two-dimensional

inviscid flows. The coarse mesh has 6019 vertices, 17,473 edges, 11,451 triangles, 4 bodies, and 593 boundary

edges. The fine mesh has 15,606 vertices, 45,878 edges, 30,269 triangles, 4 bodies, and 949 boundary edges.
In the Gray implementation of the explicit code vectorization is achieved by coloring the edges of the mesh

(more details may be found in [1]. The Gray implementation is highly optimized and the performance of

the code is comparable to that of existing structured grid codes.The implicit code was not optimized for the
Cray Y-MP, since it was developed on the Intel iPSC/860. The result is that it runs in an almost scalar

fashion on the Cray, except for the right hand side computation. However, a similar implicit unstructured

grid Navier-Stokes code was implemented earlier on the Gray Y-MP and optimized by Venkatakrishnan and

Mavriplis [3], which runs at around 110-120 megaflops. All the megaflop numbers in this section are based

on operation counts using the Cray hardware performance monitor.

The explicit scheme is a four stage Runge-Kutta scheme and uses a CFL number of 1.4. With the
GMRES/DIAG scheme, the start-up CFL number is 3 and the CFL number is allowed to vary inversely

proportional to the L2 norm of the residual up to a maximum of 30. With G'MRES/ILU, the start-up CFL

number is 20 and the CFL number is allowed to vary inversely proportional to the L2 norm of the residual

up to a maximum of 200000. With both the implicit schemes, the number of GMR.ES search directions used
is 15.

First, the explicit and implicit schemes are compared when cell partitioning is employed. When using

GMRES/ILU, a block diagonal preconditioning is employed for the vertices on the interprocessor boundaries.

Figures 3 and 4 show the convergence characteristics of the explicit and implicit schemes as a function of
the number of iterations for the coarse and fine grids.

0_

0

10_

10
i
"t.,

....9........... ,...
': i i

/
.. },........... _ ... -

103- ._ _ _ i
'% i ' '
•._ !

Y :: -- GMRES/ILU - 1 Woe.

1 -4.O_:.._.....i........] _MRF_.S_U- 4 r_,:*........_,_X_ _] GMaES_U _6p_,_

_- _ I-.- _G

"_ / i i

10 0 50 100 150 200

Iterations

Figure 3: Convergence histories with various schemes on the coarse grid with cell partitioning.

It may be observed that the explicit scheme is barely converging while the implicit schemes converge

quickly. The GMRES/ILU processor-implicit preconditioning exhibits degradation in convergence as the

number of processors increases, but the degradation is not serious. Even with 128 processors, it performs

much better than the GMRES/DIAG. In examining Figures 3 and 4, it is seen that the convergence histories

with GMRES/ILU gravitate towards that of GMRES/DIAG as the number of processors increases. In the
limit of 1 grid point per processqr the two will be identical. In these figures, since the problem does not

fit on one processor of the Intel iPSC/860, the uni-processor runs were carried out on the Cray Y-MP The

times per iteration in seconds and the convergence rates are shown in Tables 1 and 2 for the coarse and fine

grids, respectively. The convergence rate is defined as

1

Rate=(-_l) "-'-''r (12)

where R,_ is the L2 norm of the residual at the end of nth time step and R1 is the residual at the end of the

first time step. It may be observed that the convergence rates of the explicit scheme (RK4) and the implicit

scheme (GMRES/DIAG) are independent of the number of processors used, whereas that of GMRES/ILU

exhibits a slight degradation with increasing number of processors. Finally, since time to completion is of

ultimate interest, Figure 5 shows the convergence histories for the fine grid problem as a function of the

elapsed time with the number of processors fixed at 64. It clearly shows the superiority of the GMRES/ILU
processor-implicit technique over the explicit and the GMRES/DIAG.

Table 1: Performance of the cell-partitioned implicit code on the Intel iPSC/860 - 6019 vertices

No. of processors
Scheme

RK4

GMRES/DIAG

GMRES/ILU

Measure

Time/iteration (sec)

Cony. rate/iteration

Time/iteration (sec)

Conv. rate/iteration

Time/iteration (sec)

Cony. rate/iteration

1 4 8 16 32 64

1.06 0.58 0.33 0.20 0.13

0.973 0.973 0.973 0.973 0.973 0.973

3.12 1.72 1.00 0.64 0.46

0.874 0.874 0.874 0.874 0.874 0.874

4.47 2.40 1.34 0.82 0.55
0.790 0.797 0.798 0.793 0.799 0.802

The effect of improving the preconditioning of the interface vertices by means of the Modified Schur

Complement preconditioning technique [12] is addressed next. A very coarse problem with 843 vertices is

o.-4

0_

10 o.

-1.

..i...............................i...............................1o-z 'X'"""i...............................t...............................
10 , _.4 r_ : _

lo"

.t... /X _ • Otalkvmu-Ilp_.

-4._,.._:.._............._.......+..................o_numn..u.32_*,
10 _,-'_ I', _,'-. ! ,.... am.zs_,.u._,,p_,

i -'_ _,_ " '_ I-.- _-I:_p,.,,
_;"e .. I-- ou_a,m,,a
"_" r _ .,., 1-.. nu

10 i ",YRS. "" '\ !

-6 _ , ,
1 0 50 1O0 150 200

Iterations

Figure 4: Convergence histories with various schemes on the fine grid with cell partitioning.

Table 2: Performance of the cell-partitioned implicit code on the Intel iPSC/860 - 15606 vertices

No. of processors
Scheme

RK4

GMRES/DIAG

GMRES/ILU

Measure

Time/iteration (sec)
Cony. rate/iteration

Time/iteration (sec)
Conv. rate/iteration

Time/iteration (sec)

Conv. rate/iteration

1 16 32 64

- 0.85 0.44 0.25

0.997 0.997 0.997 0.997

- 2.27 1.30 0.81

0.968 0.968 0.968 0.968

- 3.16 1.74 1.04

0.870 0.880 0.883 0.885

128

0.16
0.997

0.56
0.968

0.68

0.903

considered under the same flow conditions. For simplicity, only a two processor partitioning is considered.

In this case, the vertices on the interface are only shared by two processors (i.e., there are no cross points).

The theory of MSC preconditioning is based on considering a domain split into two nonoverlapping domains

with vertices on the interface. In this work a block diagonal approximation to the Schur complement is
derived by using the probe vectors discussed earlier. Figure 6 shows the convergence histories as a function

of the number of iterations of the GMRES/ILU technique with block diagonal preconditioning and with

MSC preconditioning. The convergence deteriorates with MSC preconditioning compared to using diagonal

preconditioning. In light of this negative result and of the heuristic nature by which MSC preconditioning
is extended to deal with situations involving more than two processors and having cross points, we do not

investigate this technique any further. We believe the block diagonal preconditioning for the interface vertices

offers the best compromise in terms of parallelism and convergence.

Next, the explicit and implicit schemes are compared when vertex partitioning is employed. Recall that

in this case there is no overlap of vertices between processors, and hence no special interface preconditioning
is required when GMRES/ILU is used. In the preconditioning phase, ILU factorization is carried out for each

processor by zeroing out the matrix entries whose column numbers lie outside the processor domain i.e., with

zero Dirichlet boundary conditions. This approximation is consistent with the steady state solution AW = 0.

Figures 7 and 8 show the convergence histories for the coarse and fine grids when using vertex partitioning.

The convergence histories are comparable to those obtained with cell partitioning (Figures 3 and 4). Tables
3 and 4 show the times per iteration in seconds and the convergence rates. In comparing with the results

for cell partitioning (Tables 1 and 2), it is seen that the elapsed times with vertex partitioning are slightly

better than those with cell partitioning for all the algorithms, especially for the implicit schemes. However,
the convergence rates with the GMRES/ILU are slightly worse than those obtained with cell partitioning.

10° i i i

• ! i1o ,%,,,,
-2. f.. p. :,_.t_et ; ;

-3. .._...._.'_:...:....:.._.............".:.::.'_.,_,'

•_ 1
"_ -,i....................i..................i....................i.....................

..... i

I0 ('" _ !

._i....................!....................:
I0 -""'""-- _ i

-gr , i i
10 0 50 100 150 200

Elapsed time

Figure 5: Convergence histories as a function of elapsed times on the fine grid with 64 processors.

Table 3:

vertices
Performance of the vertex-partitioned implicit code on the Intel iPSC/860 - 6019

Scheme Measure

RK4 Time/iteration (see)

GMRES/DIAG

GMRES/ILU

Conv. rate/iteration

Time/iteration (see)
Conv. rate/iteration

Time/iteration (see)

Conv. rate/iteration

No. of processors
1 4 8 16 32 64

1.07 0.59 0.32 0.20 0.13

0.973 0.973' 0.973 0.973 0.973 0.973

3.06 1.66 0.95 0.59 0.42

0.874 0.874 0.874 0.874 0.874 0.874

4.22 2.22 1.22 0.73 0.48

0.790 0.793 0.800 0.802 0.814 0.824

In order to get an idea of the relative performances of the codes on the Intel iPSC/860 and the Cray

Y-MP/1, performance data from the Cray implementation are given. The elapsed times on the Cray Y-
MP/1 are respectively, 0.15 and 0.39 seconds per time step for the coarse and fine grids with the explicit

scheme. The explicit code runs at 150 megaflops on the Cray Y-MP/1. The megaflop ratings on the Cray

are obtained using the hardware performance monitor. Timings for the implicit scheme on the Cray Y-MP/1

are not provided since the codes have not been not optimized.

6 Conclusions

It has been shown that implicit schemes can be carefully designed to yield good performance when solving

unstructured grid problems on parallel computers. Such schemes outperform explicit schemes in terms of the
time required to converge to a steady state solution. The GMRES technique with ILU preconditioning within

each processor performs better than the explicit scheme and the GMRES procedure with block diagonal

preconditioning. In the case where cells are partitioned, a block diagonal preconditioning for the interface

points is shown to be effective. The degradation in convergence with increasing number of processors that
results from this treatment of the interface nodes is shown to be moderate.

0

[-,-

lOq iii_ !.............___ Pro__oo_o_

'=_ lO -3............._.-...ii _t_t-."_................_................il................

ld ..

10_ /,_'"

4
i i i

10 0 10 20 30 40 50

Iterations

Figure 6: Convergence histories with diagonal preconditioning and with MSC preconditioning on a coarse
grid with 460 vertices.

Table 4: Performance of the vertex-partitioned implicit code on the Intel iPSC/860 - 15606
vertices

Scheme

RK4

GMRES/DIAG

GMRES/ILU

Measure

Time/iteration (sec)

Conv. rate/iteration

Time/iteration (sec)

Cony. rate/iteration

Time/iteration (sec)

1

0.997

0.968

Conv. rate/iteration 0.870

No. of processors
16 32 64 128

0.78 0.43 0.25 0.15

0.997 0.997 0.997 0.997

2.19 1.24 0.75 0.51

0.968 0.968 0.968 0.968

2.91 1.61 0.93 0.60
0.899 0.900 0.902 0.912

7 Acknowledgements

The author thanks the NAS Applied research branch at NASA Ames Research Center for supporting this

project. The author also thanks Tim Barth of the Computational Fluid Dynamics branch for providing the
explicit Cray code.

References

[1] T. J. Barth and D. Jespersen. 1989. The design and application of upwind schemes on unstructured

meshes. In 27th Aerospace sciences Meeting (Reno). Paper AIAA 89-0366.

[2] D. J. Mavriplis and A. Jameson. 1988. Multigrid solution of the two-dimensional Euler equations on

unstructured triangular grids. In AIAA Journal, Vol 26, No. 7, July 1988, pp. 824-831.

[3] V. Venkatakrishnan and D. J. Mavriplis. 1993. Implicit solvers for unstructured meshes. In J. Comp.

Physics, Vol. 105, pp. 83-91.

[4] Y. Saad and M.H. Schulz. 1986. GMRES: A generalized minimum residual algorithm for solving non-

symmetric linear systems. In SIAM J. Sci. Star. Cornp., Vol. 7, No. 3, pp. 856-869.

[5] V. Venkatakrishnan, H.D. Simon, and T.J. Barth. 1992. A MIMD Implementation of a Parallel Euler

Solver for Unstructured Grids. The Journal of Supercomputing, 6, pp. 117-137.

10

H

100.

10 -1

10-z

10- 3.

10-*"

10"

-- GMRES/ILU. I proc.

.... G_U - 4 procs.

....... G_U - 16 procs

i "" -=-. GMRES/ILU - 64 procs

-._:: :: i ::
..................._-.-___.!................ _................ _................ _.................

:',i i i

! "4. _-':".2" \ ,*_ i

................ ;................ ;.............. _.......-.,__:-q.::.:......_,._,_

0 10 20 30 40 50

Iterations

Figure 7: Convergence histories with GMRES/ILU on the coarse grid with vertex partitioning.

[6] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. 1992. The design and implementation of

a parallel unstructured Euler solver using software primitives. In 30th AIAA Aerospace Sciences Conf.,
AIAA 92-0562, Reno, NV.

[7] P.L. Roe. 1981. Approximate Riemann solvers, parameter vectors and difference schemes. In J. Comp.

Physics, Vol. 43, No. 7, pp. 357-372.

[8] H. D. Simon. 1991. Partitioning of unstructured problems for parallel processing. Computing Systems in
Engineering, Vol. 2, No. 2/3, pp. 135-148.

[9] V. Venkatakrishnan. 1993. Parallel computation of Ax and ATx. Submitted to the Int. J. of High Speed
Computing.

[10] E. Anderson and Y. Saad. 1989. Solving sparse triangular systems on parallel computers. In International

J. of High Speed Computing, Vol. 1, No. 1, pp. 73-96.

[11] E. Barszcz, R.A. Fatoohi, V. Venkatakrishnan and S. Weeratunga. 1993. Solution of regular, sparse

triangular linear systems on vector and distributed-memory multiprocessors. In NAS Applied Research

Branch technical report RNR-93-007, NASA Ames Research Center, Moffett Field, CA.

[12] D.E. Keyes and W. Gropp. 1988. Domain decomposition techniques for nonsymmetric systems of el-

liptic boundary value problems: Examples from CFD. In the Proceedings of The Second International

Symposium on Domain Decomposition Methods, UCLA, CA.

[13] T.F. Chart and D.C. Resasco. 1987. A framework for the analysis and construction of domain decom-

position preconditioners. UCLA Dept. of Computational and Applied Mathematics Report, CAM 87-09.

[14] V. Venkatakrishnan. 1993. On the accuracy of limiters and convergence to steady state solutions. Pre-

sented at 31st AIAA Aerospace Sciences Meeting, AIAA 93-0880, Reno, NV. Submitted to the J. of
Comp. Phys.

11

.,..q

a_

100

-I

I0

-2

I0

lo.3

..4

10

-5

10

-15

10

-- GMRES/ILU- 1 proc.

L • | GMRES/]LU- 16 pro¢:*
_/............. .':".............. '1 GMRES/ILU - 32 proct
| i / GMRES/ILU - 64 pr_

-.k.___-...-_.br- i ; i.................

............................. _'".-................ _ :........ __._¥ "_.. _,/.,_.. _.... ,_I............. :i.................

................_ :,....... \,................!..,-._-_....

i i . i "%'?"

0 20 40 60 80 100

Iterations

Figure 8: Convergence histories with GMRES/ILU on the fine grid with vertex partitioning.

12

